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Abstract

We present Verification & Validation (V&V) results for an adaptive finite element turbulent flow
and sensitivity solver. The three essential steps in V&V - Code Verification, Solution Verification, and
Validation - are carried out as recommended by standards of good practice in CFD. Verification of the
solvers, adaptive procedure and single grid error estimators (for global, surface integral or pointwise
quantities) are performed all at once for wall bounded turbulent flows using the Method of the Manufac-
tured Solution. Solution Verification is then carried out on the ERCOFTAC test case C-30, a backward
facing step and on the turbulent flow over a square obstacle in proximity of a flat plate. Grid independent
results with error estimations are achieved using the verified adaptive methodology and single-grid error
evaluation procedures. Finally, Validation of numerical results for the square cylinder flows is carried
out by examining comparisons to experimental data. In addition, the paper explores the Sensitivity
Equation Method (SEM) as a tool to perform uncertainty analysis of CFD predictions in the context of
Validation. Sensitivity Analysis can yield estimates of uncertainty of the flow response to uncertainties
or inaccuraccies in the data input to the flow solver.

1 Introduction

Accurate and reliable predictions of fluid flows have been the topic of much research by the CFD community
over the past several years. A review of the literature reveals that, in many cases, predictions of a given
flow by different authors show unexpectedly large scatter. This can be especially disconcerting when people
produce vastly different predictions while using similar models and numerical methods. Thus, the question
of the error associated to numerical solutions arises to determine to which extent a solution is reliable. Irre-
spective of the quality of a mathematical model, the accuracy of a numerical procedure or the attention paid
to numerical linear solver, an error will always exist. The quantification of this error is of great importance
since it ascertains the trust that one can legitimately have in the computed solution. Experimental data
are always reported with uncertainty bars. Surprisingly, it is not a common practice for numerical results.
However, a growing effort has been undertaken by the computational science community to quantify uncer-
tainty in computer simulations. In Computational Fluid Dynamics (CFD) this endeavour has led to a broad
discussion on Verification and Validation (V&V) by several organizations such as the AIAA, the ASME, the
ERCOFTAC or the ITTC Resistance Committee. Two workshops on CFD Uncertainty Analysis have been
held in Lisbon [1, 2] bringing together people concerned about the reliability of their computational results.
Such discussions have succeeded establishing standardized procedures. However, open questions still remain
and some more progress needs to be achieved in the V&V discipline.

The different types of errors associated to a numerical solution can be classified with the taxonomy
proposed by Oberkampf et al. [3] or Ferziger and Perić [4]. Such a taxonomy is meaningful and adequate in
the context of V&V as demonstrated by Roache in Ref. [5]. Each type of error associated to a numerical
solution falls in one of the following five categories :
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1. modeling error
2. discretization error
3. iteration error
4. programming error
5. computer round-off error

For the present study, we assumed that codes use a sufficiently robust linear solver to reduce the algebraic
residuals of the discretized equations to machine precision ensuring that the iteration errors on the computed
solutions are negligible. Furthermore, double precision computations are performed so that the computer
round-off error are not significant compared to the other sources of error. We are left thus with programming
errors, discretization errors and physical modeling errors. These three types of errors can be directly related
to the three essential steps in Verification and Validation as discussed in Roache’s book [5] :

1. Code Verification

2. Solution Verification

3. Validation

Verification is defined as a synonym for solving the equations accurately (Solving the equations right). Hence,
Verification is essentially and strictly in mathematical and numerical analysis and performed in two steps
The first one is Code Verification which aims at identifying and removing any programming error. Once
this step is completed, one can focus on the other types of errors having full confidence in the solver at
hand. Furthermore, the effective convergence rate of the numerical methods used is assessed numerically
during this first step. The Method of the Manufactured Solution (MMS) [6] provides a rigorous framework to
easily perform Code Verification. Moreover, the performance of the error estimation procedures used during
the second verification step can also be assessed by comparison to true errors. In V&V, the most popular
practice to analyse grid convergence and to provide uncertainty measures of numerical predictions is the use
of the Grid Convergence Index (GCI) [7, 5]. It computes reliable error bars by applying safety factors on
error estimates obtained from Richardson extrapolation. Its successes, difficulties and failures have already
been reported for example in Refs. [7, 8, 9]. However, it requires to compute solutions on at least three grids
and often more [9]. Thus, the GCI can not report errors from a single grid computation. Here, we propose
the use of single-grid recovery-based error estimators to produce error estimates for global norms and for
pointwise quantities. These estimates are compared to the true errors to assess their reliability. That is, we
perform the verification of the verification procedure. Code Verification is performed for an Adaptive Finite
Element Solver driven by error estimates for turbulent flows and sensitivities.

The second step, Solution Verification, aims at evaluating the discrepancy between the exact solution
to the differential equations modeling the phenomenom of interest and the exact solution to the algebraic
equations arising from discretization. As mentioned earlier, we assume that computer round-off and iteration
errors are negligible. In this case, Solution Verification reduces to the evaluation of discretization errors
caused by, among other things :

• the choice of polynomial interpolation function for finite element approximations, or of flux evaluation
in finite volume methods,

• the distribution of computational cell sizes,

• the representation and interpolation of boundary conditions,

• the discretization of curved geometries,

• discretization of data such as temperature dependent fluid properties or the eddy viscosity,

• nonlinear mixed boundary conditions.

Adaptivity, Sensitivities and Uncertainties in CFD 

8 - 2 RTO-MP-AVT-147 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



All these aspects are within the control of the analyst. Grid refinement studies can be performed and
error estimates can be obtained. Adaptive methods are an especially good tool for assessing and controling
these errors, that is verifying a given simulation. We illustrate this for incompressible turbulent flows over a
backward facing step where grid independent predictions are certified using mesh adaptivity. Error estimates
on global, local and integral quantities provide several measures of the reliability of the numerical results.

The third step, Validation, is the process of determining if the right equations are solved for the process
at hand (Solving the right equations). It is essentially and strictly an engineering activity involving compar-
ition with laboratory or field data. It goes without saying that one performs Validation only with verified
simulations obtained with verified code. This is illustrated here for the turbulent flow over a square obstacle
in proximity of a flat plate where numerical results from our adaptive finite-element solver are compared to
the Laser Doppler Velocimetry measurements of Wu and Martinuzzi [10]. However, to make this exercise
truly meaningful, one must account for uncertainties in both measurements and in the input parameters to
the flow solver. Input parameters to a CFD code fall in two categories : value and shape parameters. A
value parameter does not affect the shape of the computational domain. Typical examples include : values
of physical properties (say viscosity), a closure coefficient in a turbulence model, a boundary condition, a
constant in a constitutive equations, etc. A shape parameter affects the geometry of the computational
domain. Examples include the details of geometry of an airfoil, its angle of attack, the relative position of
a slat or flap, etc. All such input parameters are prescribed to a certain level of accuracy or uncertainty
which has a direct impact on the accuracy/uncertainty of the CFD solution. For example, a least-squares
correlation of viscosity as a function of temperature may be accurate to say 6% [11], while an angle of attack
my be measured to within say .1 degrees. Finally, manufacturing tolerances result in uncertainties in the
geometrical data. All these uncertainties are beyond the control of the analysts. Yet they must be accounted
for to achieve meaningful comparisons with measurements. In this paper, we show how sensitivity informa-
tion can be used to provide uncertainty intervals for the CFD solution computed at the nominal values of
the parameters. The resulting uncertainty bars put CFD on par with experimental techniques and provide
a tool to assess to what extent these accurate solution can be trusted. The larger the uncertainty of the flow
response the lower the confidence.

The paper is organized as follows. Section 2 presents the modeling equations for turbulent flows and their
sensitivities. In Section 3, the finite element formulation and adaptive remeshing is described along with the
error estimation procedure. Code Verification by the Method of the Manufactured Solution is presented in
Section 4. Moreover, the performance of the error estimator is evaluated. Section 5 considers the flow over
a backward facing-step to perform Solution Verification with mesh adaptation. Validation and Uncertainty
analysis of CFD results is reported in Section 6 for the flow of air around a square cross-section cylinder in
the proximity of a solid wall.

2 Turbulent Flows and Sensitivity Analysis

2.1 Turbulent Flow Modeling

The flows of interest are described by the Reynolds-Averaged Navier-Stokes (RANS) equations. The mo-
mentum and mass conservation laws are written as :

ρu · ∇u = −∇p +∇ · τ(u) + f (1)
∇ · u = 0 (2)

where ρ is the density, u the velocity, p the pressure and f the volumetric forces. Noting µ the molecular
dynamic viscosity and µt the turbulent dynamic viscosity, the stress tensor τ is defined according to the
newton’s law and the first order turbulence modelization approximation :

τ(u) = (µ + µt)
[
∇u + (∇u)T

]
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The system is closed by computing the turbulent viscosity using the k − ε model. The eddy viscosity is
computed from k and ε by :

µt = ρCµ
k2

ε
(3)

To preserve positivity of the dependent variables, we work with the logarithmic form of these equations [12].
This can be viewed as using the following change of dependent variables :

K = ln(k) and E = ln(ε) (4)

The transport equations for the logarithmic variables are :

ρu · ∇K = ∇ ·
[(

µ +
µt

σk

)
∇K

]
+
(

µ +
µt

σk

)
∇K · ∇K (5)

+µte
−KP − ρ2Cµ

eK

µt
+ qK

ρu · ∇E = ∇ ·
[(

µ +
µt

σε

)
∇E
]

+
(

µ +
µt

σε

)
∇E · ∇E (6)

+ρC1CµeK−EP − C2ρeE−K + qE

The production of turbulence P is defined as :

P = ∇u :
[
∇u + (∇u)T

]
The constants appearing in these equations take on the standard values proposed by Launder and Spald-
ing [13] and are given in Table 1. Note that equations (5)-(6) are equivalent to the original equations of the

Table 1: Constant of the turbulence model

σk σε Cε1 Cε2 Cµ

1.0 1.3 1.44 1.92 0.09

turbulence model; only the computational variables are different. Hence, the turbulence model is unchanged.
The eddy viscosity is given by :

µt = ρCµe2K−E (7)

2.1.1 Classical Dirichlet and Neumann boundary conditions

Boundaries of Ω that are not walls are modeled using standard Dirichlet and Neumann boundary conditions.
They are imposed on boundaries ΓD and ΓN respectively :

• Dirichlet boundary conditions :

u = u ; K = ln(βk) ; E = ln(βε) (8)

• Neumann boundary conditions :

[−pI + τ(u)] · n̂ = t ;
[(

µ +
µt

σk

)
∇K

]
· n̂ = 0 ;

[(
µ +

µt

σε

)
∇E
]
· n̂ = 0 (9)

where n̂ is an outward unit vector normal to the boundary, I the second order identity tensor and βk and
βε small constants.
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2.1.2 Wall boundary conditions

The standard k − ε turbulence model is not valid when the turbulent Reynolds number is low, as it is the
case in near wall regions. Wall functions are used to describe the solution in these areas. The computational
boundary is set at a distance d from the physical wall boundary. The gap between these two boundaries is
the region where the flow is represented by the wall functions instead of being solved. In the remainder, the
computational wall boundary will be referred to as the wall and quantities evaluated at it will be identified
with the subscript w. We utilize the two-velocity scale wall functions described by Chabard [14] and Ignat et
al [15] and presented in what follows.

A wall function expresses the value of u+, the non-dimensional velocity parallel to the solid wall, as a
function of y+, the non-dimensional distance from the physical wall :

u+ =
1
κ

ln(Ey+) for y+ > 10.8 (10)

where κ is the Karman constant and E a roughness parameter (for smooth walls we take κ = 0.42 and
E = 9.0). The variables u+ and y+ are defined as follows :

y+ =
ρduk

µ
and u+ =

ut

u∗∗
(11)

where ut = u·t̂ denotes the tangential velocity, d is the normal distance to the physical wall and u∗∗ =
√

τw/ρ
the friction velocity. The specific value of d where the wall function is applied is chosen so that y+ lies within
the range of validity of the function (i.e. 30 < y+ < 300) [16]. A velocity scale based on the turbulence
kinetic energy [14] is computed by :

uk = C
1
4
µ k

1
2
w = C

1
4
µ exp

(
Kw

2

)
(12)

The boundary conditions associated to the governing equations are :

• flow boundary condition in the tangential direction : the constraint applied by the flow to the wall in
the tangential direction is prescribed as a function of the tangential velocity (mixed or Robin boundary
condition). Using the two-velocity scale wall function leads to a linear relationship between the shear
stress at the wall τw in the direction of the flow and ut.[

(τ · n̂) · t̂
]
wall

= τw = ρuku∗∗ =
ρuk

1
κ ln(E ρduk

µ )
ut (13)

• flow boundary condition in the normal direction : the normal velocity is set to zero.

u · n̂ = 0 (14)

• boundary condition for K : The K-equation is solved with a zero auxiliary flux boundary condition.
This condition arises from the fact that the wall shear stress is considered constant in the wall functions
region (i.e. 0 < y+ < 300) [16]. This Neumann condition is required to compute the distribution of uk

along the wall. (
µ +

µt

σk

)
∇K · n̂ = 0 (15)

• boundary condition for E : The boundary condition for the logarithm of ε is the logarithm of the usual
Dirichlet boundary condition for the turbulence kinetic energy dissipation rate at walls but the velocity
scaled uk is used instead of u∗∗.

E = ln
(

u3
k

κd

)
(16)
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2.2 Continuous Sensitivity Equations

The Continuous Sensitivity Equations are derived formally by direct differentiation of the flow equations
(Eqs. (1)-(2)) and the turbulence variables equations (Eqs. (5)-(6)) with respect to an arbitrary parameter
a. Thus, we treat any variable u as a function of both space and parameter a. This dependency is denoted
by u = u(x; a). The sensitivities are defined as the partial derivatives :

su =
∂u
∂a

; sp =
∂p

∂a
; sK =

∂K
∂a

; sE =
∂E
∂a

(17)

Then, CSE governing sensitivity fields are written as :

ρ′u · ∇u + ρ (su · ∇u + u · ∇su) = −∇sp +∇ · τ(su) +∇ · τ ′(u) + fs (18)
∇ · su = 0 (19)

ρ′u · ∇K + ρ (su · ∇K + u · ∇sK) = ∇ ·
[(

µ′ +
µ′t
σk

− µtσ
′
k

σ2
k

)
∇K +

(
µ +

µt

σk

)
∇sK

]
+

(
µ′ +

µ′t
σk

− µtσ
′
k

σ2
k

)
∇K · ∇K (20)

+ 2
(

µ +
µt

σk

)
∇K · ∇SK + e−K (µ′tP + µtP

′ − µtPsK)

− ρeE−K
(

2
ρ′

ρ
+

C ′
µ

Cµ
+ sK −

µ′t
µt

)

ρ′u · ∇E + ρ (su · ∇E + u · ∇sE) = ∇ ·
[(

µ′ +
µ′t
σε

− µtσ
′
ε

σ2
ε

)
∇E +

(
µ +

µt

σε

)
∇sE

]
+

(
µ′ +

µ′t
σε

− µtσ
′
ε

σ2
ε

)
∇E · ∇E + 2

(
µ +

µt

σε

)
∇E · ∇SE (21)

+ ρCε1CµeK−EP

(
ρ′

ρ
+

C ′
ε1

Cε1
+

C ′
µ

Cµ
+ SK − SE +

P ′

P

)
− Cε2ρeE−K

(
C ′

ε2

Cε2
+

ρ′

ρ
+ SE − SK

)
the partial derivatives of the fluid properties being denoted using a (′), fs being the sensitivity of the
volumetric forces and having :

τ ′(u) = (µ′ + µ′t)
[
∇u + (∇u)T

]
τ(su) = (µ + µt)

[
∇su + (∇su)T

]
P ′ = 2∇su :

[
∇u + (∇u)T

]
with the sensitivity of the eddy-viscosity given by :

µ′t = µt

(
ρ′

ρ
+

C ′
µ

Cµ
+ 2sK − sE

)
(22)

Finally, the sensitivities of the turbulence variables and those of their logarithms are related through :

SK =
Sk

k
; SE =

Sε

ε
(23)
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2.2.1 Classical Dirichlet and Neumann boundary conditions

We first present the derivation of the classical Dirichlet and Neumann boundary conditions (Eqs. (8) and (9)).
Only the material derivatives of these conditions are known. However, sensitivity boundary conditions are
obtained by expressing the relationship between the material derivative and the sensitivity ∂φ

∂a . Doing so,
the following boundary conditions are obtained.

• Dirichlet boundary condition on ΓD :

su =
Du
Da

−∇u · ∂X̂
∂a

sK =
β′

k

βk
−∇K · ∂X̂

∂a
(24)

sE =
β′

ε

βε
−∇E · ∂X̂

∂a

• Neumann boundary condition on ΓN :

[−spI + τ ′(u) + τ(su)] · n̂ =
Dt
Da

−

[
∇ [−pI + τ(u)] · ∂X̂

∂a

]
· n̂

− [−pI + τ(u)] · ∂n̂
∂a

(25)

[(
µ′ +

µ′t
σk

− µtσ
′
k

σ2
k

)
∇K +

(
µ +

µt

σk

)
∇sK

]
· n̂ = −

[
∇µ · ∂X̂

∂a
+
∇µt · ∂X̂

∂a

σk

]
∇K · n̂

−
(

µ +
µt

σk

)[
∇K · ∂n̂

∂a
+∇ (∇K) · ∂X̂

∂a
· n̂

]
(26)

[(
µ′ +

µ′t
σε

− µtσ
′
ε

σ2
ε

)
∇E +

(
µ +

µt

σε

)
∇sE

]
· n̂ = −

[
∇µ · ∂X̂

∂a
+
∇µt · ∂X̂

∂a

σε

]
∇E · n̂

−
(

µ +
µt

σε

)[
∇E · ∂n̂

∂a
+∇ (∇E) · ∂X̂

∂a
· n̂

]

As can be seen, for a shape parameter, first derivatives of the flow and turbulence variables are needed to
evaluate Dirichlet boundary conditions and second derivatives are required for evaluating Neumann bound-
ary conditions. This introduces numerical difficulties when solving the CSE, since approximate boundary
conditions are used. In practice, boundary conditions are evaluated using high order Taylor series expansions
on layered patches in conjunction with a constrained least-square procedure [17].

2.2.2 Wall boundary conditions for sensitivities

The differentiation of the wall boundary conditions leads to the following boundary conditions for CSE.

• flow sensitivity boundary condition in the tangential direction :[(
∂τ

∂a
· n̂
)
· t̂
]

wall

=

(
ρ′ +∇ρ · ∂X̂

∂a

)
uku∗∗

+ρuk
Du∗∗
Da

+ ρu∗∗
Duk

Da
− τ · ∂n̂

∂a
· t̂ (27)

−τ · n̂ · ∂t̂
∂a

−

[(
∇τ · ∂X̂

∂a

)
· n̂

]
· t̂
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with the material derivatives of the velocity scales given by :

Duk

Da
= uk

[
C ′

µ

4Cµ
+

1
2kw

(
sk +∇k · ∂X̂

∂a

)]
= uk

[
C ′

µ

4Cµ
+

1
2

(
sK +∇K · ∂X̂

∂a

)]
(28)

Du∗∗
Da

=
κ

ln(Eρduk

µ )

{
κ′ut

κ
+

(
su +∇u · ∂X̂

∂a

)
· t̂ + u · ∂t̂

∂a
(29)

− ut

ln(Eρduk

µ )

E′

E
+

d′

d
+

1
uk

Duk

Da
+

(
ρ′ +∇ρ · ∂X̂

∂a

)
ρ

−

(
µ′ +∇µ · ∂X̂

∂a

)
µ


Note that (27) is a mixed boundary condition since

(
∂τ

∂a
· n̂
)
· t̂ is related to su · t̂ through

Du∗∗
Da

.

Note also that Eqs. (27) and (29) can be simplified in the particular case of incompressible flow since
the spatial gradient of the density is always zero.

• flow sensitivity boundary condition in the normal direction :

su · n̂ = −

(
∇u · ∂X̂

∂a

)
· n̂− u · ∂n̂

∂a
(30)

• boundary condition for sK :[(
µ′ +

µ′t
σk

− µtσ
′
k

σ2
k

)
∇K +

(
µ +

µt

σk

)
∇sK

]
· n̂ = −

[
∇µ · ∂X̂

∂a
+
∇µt · ∂X̂

∂a

σk

]
∇K · n̂ (31)

−
(

µ +
µt

σk

)[
∇K · ∂n̂

∂a
+∇ (∇K) · ∂X̂

∂a
· n̂

]

• boundary condition for sE :

sE =
3
uk

Duk

Da
− κ′

κ
− d′

d
−∇E · ∂X̂

∂a
(32)

3 Finite element formulation and adaptive remeshing

The RANS equations and the logarithmic form of the turbulence equations are solved by a finite element
method. The velocity and the logarithmic turbulence variables are discretized using 6-noded quadratic el-
ements. Fluid pressure is discretized by piecewise linear continuous functions (Taylor-Hood element). For
high Reynolds number, the equations are dominated by convection and the standard Galerkin discretiza-
tion may lead to non-physical oscillations and convergence difficulties. Hence, some form of upwinding is
required. This is done by using the Streamline Upwind/Petrov-Galerkin (SUPG) stabilized formulation ini-
tially proposed by Brooks and Hughes [18] and further improved by Ilinca et al. [19]. The discretization of
the equations leads to a system of non-linear algebraic equations which are linearized by Newton’s method.
All linear algebraic systems are solved using a sparse direct solver.

The accuracy of the finite-element approximation is directly related to the local mesh size (see Refs. [20,
21]). An adaptive remeshing procedure is employed to improve the accuracy, by refining the mesh in regions
of high error in the flow and sensitivity variables. Regions targeted for refinement are identified by the
so-called Zhu-Zienkiewicz (ZZ) error estimator [22, 23] which evaluates estimates in elemental error norms.
The ZZ error estimator belongs to the family of post-processing techniques (or least-squares-based recovery
techniques) [5, 24]. These recovery-based estimators are very simple, yet they perform surprisingly well in
practice if a proper norm of the error is used [25, 24, 26].
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Error estimates are obtained by a local least-squares reconstruction of the solution derivatives for the velocity
and pressure field and the logarithms of turbulence variables. Note that, an error estimate for the eddy
viscosity is also constructed since slowly varying fields of K and E may result in rapid variation of µt.
Once error estimates are obtained for all variables (flow and sensitivities), an optimal mesh size distribution
is determined using the asymptotic convergence rate of the finite-element method and the principle of
equidistribution of the error [21] : the optimal mesh is generated to redistribute the mesh sizes so that each
element has the same contribution to the norm of the total error. This is performed in an iterative fashion,
beginning with a coarse mesh and producing a sequence of meshes which reduce the error by a constant
factor over that of the previous mesh. The mesh characteristics (element size) are derived separately for
each dependent variable. Note that refining on both the flow and its sensitivities is of crucial importance in
the present context. Indeed, the flow variables and their sensitivities do not exhibit rapid variations at the
same locations (and each sensitivity has its own area of rapid variations). Consequently, the region of high
errors on a given mesh are generally not the same for all flow variables and all sensitivity variables. Thus,
to compute accurate solutions for all variables, we calculate and drive the adaptive process with as many
error estimates as there are dependent variables involved in the problem at hand. The minimum element
size predicted by all the dependent variables is selected on a given element. The computational domain is
then remeshed using an advancing front technique. Details of this adaptive remeshing procedure may be
found in the literature [20, 21, 27, 26].

4 Adaptive Code Verification by the Method of the Manufactured
Solution

4.1 Definition of the problem

In this section, we use the Method of the Manufactured Solution for Code Verification. The manufactured
solution mimics the near-wall behavior of a two-dimensional, steady incompressible turbulent boundary-layer.
The near-wall behavior of all the specified quantities is similar to what is observed in near-wall turbulent
flows. The Reynolds number is set to one million. The manufactured solution and the source terms defining
the modified problem are described in details in Refs. [28, 29]. Additional source terms are required for
verification of wall functions; see details in Ref. [30]. Here, we extend the manufactured solution to verify
wall functions for sensitivity analysis for shape parameters. We focus on sensitivity of the flow response
with respect to the vertical position of the flat wall along which the turbulent boundary-layer is developing.
The problem is illustrated in Figure 1 where y0 is the shape parameter of interest. For completeness, we

y + 0.50

y0 �����������������������������
�����������������������������
�����������������������������
�����������������������������

0.5 1.0

y

x
0

0

physical domain modeled

Figure 1: Manufactured problem: computational domain

briefly describe the manufactured flow and sensitivity fields. As illustrated in Figure 1, the physical domain
is a square of side 0.5L with 0.5L ≤ x ≤ L and 0 ≤ y − y0 ≤ 0.5L. The Reynolds number Re is defined
by Re = U1L

ν where U1 is the reference velocity, L the reference length and ν the kinematic viscosity. All
quantities presented below are non-dimensional using L and U1 as the reference length and velocity scale.
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In the definition of the velocity components and pressure coefficient we will use the following similarity
variable with σ = 4. and σν = 2.5σ :

η =
σ(y − y0)

x
; ην =

σν(y − y0)
x

(33)

The velocity component in the x direction, u, is given by

u = erf(η) (34)

The velocity component in the y direction, v, is given by

v =
1

σ
√

π

(
1− e−η2

)
(35)

and the pressure is taken to be :

p = 0.5ln
(
2x− x2 + 0.25

)
ln
(
4y3 − 3y2 + 1.25

)
(36)

The manufactured field of k for the MS is generated using the following equation with kmax = 0.01 :

k = kmaxη2
νe1−η2

ν + αk (37)

The dissipation rate ε is as follows with νmax = 0.001 :

ε = 0.36
k2

max

νmax
e−η2

ν + αε (38)

Finally, the eddy-viscosity is obtained from

νt = cµ
k2

ε
(39)

We have added small constants αk and αε to the MS Fields for k and ε compared to what is described
in Ref. [28] to avoid logarithms of zero values. Recall that the computational variables for the turbulence
model are the logarithms of k and ε. See Ref. [26] for details.

αk = 10−5 ; αε = 10−3 (40)

The analytical solution for all variables is imposed on the inflow and upper boundaries as Dirichlet bound-
ary conditions. On the outlet, the normal and tangential forces on the boundary are imposed from the exact
velocity and pressure fields. The diffusion fluxes of k and ε are also imposed from the exact solution. Hence,
on the outlet Neumann boundary conditions are applied on all variables. On the wall (bottom boundary),
the type of boundary conditions are determined by the wall functions (see Section 2.1.2) :

• u : Robin boundary condition

• v : Dirichlet boundary condition

• k : Neumann boundary condition

• ε : Dirichlet boundary condition
As described in Ref. [30], source terms are added in the standard wall functions boundary conditions to
ensure compatibility with the manufactured solution. The wall distance is set to d = 0.006 to ensure, for a
Reynolds number of one million, that the non-dimensional wall distance d+ Eq. (11) lies in [30, 300] on all
walls remaining as close as possible to 30 for improved accuracy.

Direct differentiation of the manufactured solution with respect to y0 yields the following expressions for
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the sensitivities of the flow and turbulence variables :

Su = − 2σ

x
√

π
e−η2

Sv = − 2η

x
√

π
e−η2

Sp =
3(y − yo)[1− 2(y − yo)]

4(y − yo)3 − 3(y − yo)2 + 1.25
log(2x− x2 + 0.25)

Sk =
2kmaxσν

x
ην(η2

ν − 1)e(1−η2
ν)

Sε =
0.72k2

maxσν

xνmax
ηνe−η2

ν

The boundary conditions for the sensitivity problem are deduced from the corresponding flow boundary
conditions described above (see Section 2.2.2 for more details).

4.2 Verification of flow and sensitivity solutions

The flow and sensitivity fields are solved using the adaptive finite-element method. On parameter dependent
boundary curves, boundary conditions for the sensitivity problem are computed using the technique proposed
by Duvigneau and Pelletier [31]. It consists in a least-squares reconstruction, using Taylor series as basis
functions, that is constrained to satisfy the flow boundary conditions. The least-squares problem is defined
over patches of 8 layers of neighboring elements and uses Taylor expansion of degree 6. The methodology
has been presented in Ref. [31] for laminar flows and is extended here for turbulent flows with wall functions.
It will be shown that it ensures a sufficiently accurate evaluation of transpiration terms in the sensitivity
boundary conditions.

All flow and sensitivity variables contribute to the error estimation so that the mesh adaptation process
is driven by 10 error estimates (velocity, pressure, k, ε and µt and their corresponding sensitivities). Eight
grid adaptation cycles have been performed. Figure 2 shows the final mesh containing 123 689 nodes. It is
typical of adapted meshes for boundary layer flow problems as expected. Extensive refinement is observed
in the near-wall region. Several bands of refinement can also be identified which correspond to regions of
rapid variation in velocity, K, E and µt and their sensitivities.

Figure 3 presents the trajectories of true and estimated error norms for the flow variables and their
sensitivities. The norms showed are the following :

H1U : ||u||H1 =

√∫
Ω

(∇u · ∇u +∇v · ∇v) dΩ

H1P : ||p||H1 =

√∫
Ω

∇p · ∇p dΩ

EVM : ||µt||eqv =

√∫
Ω

∇µt · ∇µt dΩ

As can be seen, errors on both the flow and the sensitivities decrease from cycle to cycle. The trajectory
of the error estimators converges to that of the true error with mesh adaption. This property (asymptotic
exactness) implies that accuracy and reliability improve with mesh refinement.
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Figure 2: Manufactured solution : Final adapted mesh

4.3 Verification for integrals of surface quantities and their sensitivities

We now turn our attention to the evaluation the friction resistance Rf on the wall and its sensitivity, two
integral quantities. Taking ρU2

refLref as a reference force, the friction resistance is computed as follows :

Rf =
1

ρU2
refLref

∫
Γw

τ · n̂ · t̂ dΓ =
∫

Γw

[
(µ + µt)(

∂u

∂y
+

∂v

∂x
)
]

dΓ

The last integral is a simplified expression for our particular case using n̂ = [0, 1]T ;t̂ = [1, 0]T .
Direct differentiation of the above expression yields the sensitivity of the friction coefficient which is an

Eulerian derivative in the parameter space. Using the following derivatives of the geometric quantities :

∂n̂

∂y0
=

∂t̂

∂y0
= [0, 0]T ;

∂X̂

∂y0
= [0, 1]T (41)

leads to the following simplified expression for the Eulerian sensitivity of the friction resistance :

∂Rf

∂y0
=
∫

Γw

[
(µ + µt)(

∂Su

∂y
+

∂Sv

∂x
) + Sµt(

∂u

∂y
+

∂v

∂x
)
]

dΓ (42)

The required Lagrangian sensitivity is easily derived using the material derivative in parameter space.
In our particular case, the expression simplifies to :

dRf

dy0
=

1
ρU2

refLref

∫
Γw

dτ

dy0
· n̂ · t̂ dΓ

=
1

ρU2
refLref

∫
Γw

(
∂τ

∂y0
+∇τ · ∂X̂

∂y0

)
· n̂ · t̂ dΓ

=
∂Rf

∂y0
+

1
ρU2

refLref

∫
Γw

∇τ · ∂X̂

∂y0
· n̂ · t̂ dΓ

=
∂Rf

∂y0
+

1
ρU2

refLref

∫
Γw

[(µ + µt)(
∂2u

∂y2
+

∂2v

∂xy
) + Sµt

(
∂u

∂y
+

∂v

∂x
)] dΓ

(43)

As can be seen, the Lagrangian sensitivity is equal to the Eulerian sensitivity plus a transpiration term (last
term on the third and fourth lines) which accounts for the change in the position of the wall boundary caused
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Figure 3: Manufactured solution : Trajectories of true and estimated error norms

by changes in the parameter y0. Since the wall boundary condition does not depend on y0, its Lagrangian
derivative is zero. This is confirmed by Table 2 which gives the exact value of the Friction Coefficient and
its sensitivities. This means that the transpiration term (last term on the fourth line in Eq. (43)) exactly
cancels out the Eulerian sensitivity given by Eq. (42). This can easily be seen since ∂.

∂y = − ∂.
∂y0

.
Figure 4 shows the evolution of the true errors in Rf and its sensitivities with adaptive cycles. As can

Exact Friction Coefficient Exact Eulerian sensitivity Exact Lagrangian sensitivity

Rf = 0.354686 10−5 ∂Rf

∂y0
= −0.267451 10−3 dRf

dy0
= 0

Table 2: Manufactured solution : Friction resistance

be seen, the errors decrease from cycle to cycle. Hence, the errors on the gradient of integral forces can
be reduced as much as desired using the adaptive process. The proposed methodology for computing the
gradient of integral forces is thus verified as well as the expressions for the transpiration terms.
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Figure 4: Grid convergence of the sensitivities of the friction resistance on the wall
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4.4 Verification of pointwise error estimates

Finally, the accuracy of the error estimation technique for point values of flow solution is examined. The
ZZ reconstruction recovers only the solution derivatives not its value. It can not be used for pointwise error
estimates of the solution itself. To do this, we use a higher order element based least-squares reconstruc-
tion as descibed in Ref. [32]. The coordinates of the three local points under consideration are : Point
1 (0.600,0.001), Point 2 (0.750,0.002) and Point 3 (0.900,0.200). At these locations, we study the values
of the non-dimensional velocity components (U and V ), the pressure coefficient Cp, the non-dimensional
eddy-viscosity µt and their associated errors. Note that here, the pressure coefficient is defined as :

Cp =
p

ρU2
ref

(44)

The results are collected in table 3. All values have been checked for grid convergence with a convergence

Local point Variables Value True Error Estimated Error Efficiency index

1

U 0.752228 10−2 0.138221 10−6 0.100532 10−6 0.727
V 0.626501 10−5 0.362070 10−8 0.149948 10−7 4.141
Cp 0.961490 10−2 0.100520 10−8 0.386091 10−8 3.841
µt 0.748136 10−9 0.114963 10−11 0.778382 10−12 0.677

2

U 0.120354 10−1 0.229121 10−6 0.167990 10−6 0.733
V 0.159042 10−4 0.142939 10−6 0.116034 10−6 0.812
Cp 0.191728 10−1 0.145184 10−7 0.790371 10−8 0.544
µt 0.209155 10−8 0.432803 10−12 0.676875 10−12 1.564

3

U 0.791275 10+0 0.358949 10−6 0.903074 10−7 0.252
V 0.770422 10−1 0.538351 10−6 0.628828 10−6 1.168
Cp 0.161486 10−1 0.131497 10−6 0.310776 10−6 2.363
µt 0.676005 10−4 0.111044 10−9 0.189889 10−8 17.100

Table 3: Results for local flow quantities

behaviour similar to the one observed for the friction resistance (see figure 4). The largest value of the true
relative error occurs for µt at point 1 (0.15366591 10−2). In general the finite element solution reproduces
the exact solution with more than four or five significant digits. The element based error estimator predicts
no more than the order of magnitude of the true error for all variables at the three locations except for µt

at point 3. Deriving an average efficiency index is a non-trivial task. Simple arithmetic averaging can lead
to misleading results. We have opted to normalize all efficiency indices by using their inverse when they
are greater than one. This is acceptable since an index value of ξ is equivalent to one of 1

ξ the difference
being that one of them indicates overestimation while the other one expresses underestimation; neither being
preferable. This leads to a mean efficiency index of 0.498. These results are satisfactory in terms of accurate
error prediction for this class of problem and are typical of what was observed previously. However, since
the error is not fully reproduced, it would be useful and desirable to develop safety factors to compute error
bands in the spirit of the Grid Convergence Index [5]. Finding the safety factors would require a large number
of test cases for achieving error bands that are correct in ninety five percent of the cases. The present results
are promising and bode well for deriving a single-grid error banding procedure. In light of these results, we
can confidently state that the adaptive finite element flow and sensitivity solver is verified.

5 Solution Verification with mesh adaptation

Now that the flow solver, the adaptive procedure and the error estimators have been verified, we turn our
attention to the flow over a backward facing-step to illustrate the concept of Solution Verification. The
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Figure 5: Inlet profiles for the turbulence variables

configuration corresponds to the ERCOFTAC test case C-30 for which the Reynolds number based on the
step height is 50000. This configuration was used in the two Workshops on CFD Uncertainty Analysis and
details on the inlet profiles can be found in Ref. [33].

The boundary conditions along walls are prescribed using wall functions. At the inlet, Dirichlet boundary
conditions are applied and at the outlet we prescribed homogeneous Neumann boundary conditions. The
inlet profiles for all variables are defined by fitting mathematical expressions to experimental data so as to
ensure the continuity of both the variables and their derivatives. The original inlet profiles for the turbulent
variables are plotted as solid lines in figure 5. As stated, these profiles are constructed in a piecewise manner
to obtain C1 continuous functions as required by most numerical techniques. However, the logarithms of
these C1 continuous functions are not necessarily C1 continuous. This may lead to numerical problems for
our code. Hence, we sightly modified the inlet profiles. The background experimental data are unchanged but
the piecewise mathematical treatment for obtaining the profiles is done so that our computational variables
(the logarithms of the turbulent variables) is C1 continuous. The resulting inlet profiles thus obtained are
plotted as dashed lines in figure 5. We believe that the modification of the profiles will only have minor
influence on the computed solution since the physic behind these two sets of profiles remains the same. Only,
the mathematical assembly is different.

Solutions are considered mesh independent when no major changes occur with further mesh refinement.
Seven grid adaptation cycles have been performed. Figure 6 shows the last adapted grid which contain
55 776 nodes. A close-up view of the adapted mesh around the step corner is also provided in figure 7.
It is similar to adapted meshes obtained previously for simulations of the flows over the backward facing
step experimental configurations of Kim [34] and of Vogel et al. [35]. Again, a high degree of refinement
has occured intensively in the near-wall region. Different bands of refinement can also be identified which
correspond to regions of rapid variation in velocity, K, E and µt.

Before proceeding with any analysis of the results, we must check that the non-dimensional wall distance
chosen for each wall lies in the interval of validity imposed by the wall functions which requires that y+ is
less than 300 and greater than 30 but preferably as close to 30 as possible. Figure 8 gives the evolution of
y+ with adaptive cycles for each wall. As can be seen, the wall distances converge with the adaptive cycles.
And, for the last adapted grid, the above condition is satisfied everywhere except near the corner singularity.

We first examine the result for the recirculation length. Figure 9 shows the evolution of the computed
recirculation length with adaptive cycles. As can be seen, convergence is achieved. The value of the non-
dimensional recirculation length computed on the last adapted mesh is estimated at 5.446699. The evaluation
of the discretization error is evaluated to 0.102065. Thus, we report that Lrec/D = 5.4± 0.1.
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Figure 6: Adapted mesh for the backward facing step

Figure 7: Inside view of the adapted mesh around the step

We now examine several integral quantities : the friction resistance Rf on the bottom and top walls and
the pressure resistance Rp on the bottom wall. Taking ρU2

refLref as a reference force, the friction resistance
is computed from Eq. (4.3) and the pressure resistance as follows :

Rp =
1

ρU2
refLref

∫
Γw

−(p− poutlet)n̂ · ey dΓ (45)

Table 4 gives the numerical values of the coefficients and their estimated errors on the last adaptive grid.

Rf on the bottom wall Rf on the top wall Rp on the bottom wall

Value 0.526499 10−01 0.672544 10−01 0.119342 10+00

Estimated Error 0.993600 10−02 0.253363 10−01 0.223481 10−01

Table 4: Results for the resistance coefficients

Finally, the errors on pointwise flow quantities are examined. The non-dimensional coordinates of the
three points under consideration are : Point 1 (0.0,1.1), Point 2 (1.0,0.1) and Point 3 (4.0,0.1). At these
locations, we consider the values of the velocity components (U and V ), the pressure coefficient Cp, the
eddy-viscosity µt and their errors. Note that here, the pressure coefficient is defined as :

Cp =
p− poutlet

1/2ρU2
ref

The results are collected in table 5. All values have been checked for grid convergence with a convergence
behaviour similar to the one observed for the recirculation length (see figure 9). The maximum estimated

16
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Figure 8: Evolution of y+ with adaptive cycles
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Local point Variables Value Estimated Error

1

U +0.647700 10+00 0.396496 10−04

V +0.289958 10−01 0.102193 10−03

Cp −0.133953 10+00 0.339351 10−04

µt +0.171898 10−02 0.314743 10−06

2

U −0.944773 10−01 0.371167 10−04

V +0.721732 10−02 0.110560 10−04

Cp −0.237365 10+00 0.226732 10−05

µt +0.195559 10−02 0.175705 10−04

3

U −0.125582 10+00 0.109521 10−04

V −0.608819 10−02 0.796328 10−06

Cp −0.139171 10+00 0.484284 10−05

µt +0.612614 10−02 0.185213 10−04

Table 5: Results for local flow quantities

relative error occurs for µt at point 2 (0.898476 10−2). Generally speaking the error estimates appear sharp
in that they are small enough to provide hints that we have achieved 4 to 5 significant digits of accuracy in
predictions.

6 Validation and Uncertainty analysis of CFD results

6.1 Definition of the problem

We now consider the flow of air around a square cross-section cylinder in the proximity of a solid wall as
investigated by Wu and Martinuzzi using Laser Doppler Velocimetry [10]. The experimental configuration
consists of a smooth flat plate located in the 0.45 m × 0.45 m test section of a suction-type wind tunnel.
Details of the experimental set-up are shown in Figure 10. Experiments were conducted for a Reynolds
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number of 22000 based on D, the dimension of the side of the square obstacle, and U0, the inlet velocity.
The oncoming free stream turbulence intensity is set at 1% and the mean flow is steady. In the reminder of
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Figure 10: Experimental Set-up

the article, all quantities presented are non-dimensional using D and U0 as the reference length and velocity
scale.

6.2 Computational domain and sensitivity analysis

The computational domain and boundary conditions are shown in Figure 11. In the experiment, an end-plate
flap was adjusted to maintain parallel flow below the plate. However, it is generally accepted that the flow
above the plate is not influenced by the flow under the plate. Hence, only the portion of the tunnel located
above the plate is included in the computational model. Also it was deemed unnecessary to simulate the
effect of the end-plate flap.

t
dx
d

= 0- p + 2( ) u

dx
d

= 0
k

dx
d

= 0
ε

µ + µ

v = 0

40.5 D

20.5 D

10 D

ε = 5e-07

k = 5e-05

v = 0
u = 1

y

x

15 D

Figure 11: Computational domain and boundary conditions

Wall functions provide boundary conditions along the upper wall of the tunnel, the sides of the obstacle,
and the plate. As was shown in a previous study [35], it is necessary to include the thickness of the real
plate in the computational model in order to reproduce the physically observed stagnation point at the
leading edge of the plate. The half-thickness of the plate model is set to 0.083. With this model geometry,
the production of k, which depends on the velocity gradients, is triggered a short distance upstream of the
leading edge of the plate so that realistic levels of turbulence are reproduced in this region. The leading
edge of the plate, as well as the corners of the cylinder, are rounded to avoid corner singularities with wall
functions.

The inlet value of k is set to achieve an inflow with a turbulence intensity of 1%. Based on previous
experience [35], the inlet value of ε is adjusted so that the inlet eddy-viscosity is equal to ten times the
molecular viscosity.

The baseline configuration is obtained for S = S0 = 0.25. We use shape sensitivity analysis to look at
the effects of uncertainties in the gap size S between the square cylinder and the flat plate. The required
sensitivities of geometric quantities are given by :

∂n̂
∂S

=
∂t̂
∂S

= [0, 0]T ;
∂X̂
∂S

= [0,−1]T
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6.3 Numerical results

Mesh independent flow and sensitivity solutions are obtained by the adaptive remeshing procedure. The
final mesh, after 8 adaptive remeshings, has 556,567 nodes. Figure 12 and 13 show the 6th mesh generated
by the adaptive process (the 8th mesh being too fine to be of any visual interest once displayed in a figure).
The refinement in the boundary layers, shear layers and near the surface of the obstacle, can clearly be seen.

Figure 12: Mesh after 6 cycles of adaption

Figure 13: Mesh after 6 cycles of adaption near obstacle

Figure 14 shows the distribution of the non-dimensional distance to the wall, as defined by Eq. (11), along
the flat plate with adaptive cycles. As can be seen, mesh independent boundary conditions are achieved
and all values of y+ satisfy the condition 30 < y+ < 300. This is indeed important to obtain a proper
modelization of the flow with wall functions. Although not illustrated here, similar observations hold for the
distributions of y+ along all wall boundaries.
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Figure 15: Comparison of velocity profiles with experiments at x = 1

We now compare present flow predictions to the experimental data of Wu and Martinuzzi to illustrate
Code Validation. Transverse profiles of the mean velocity components, u and v, and of the streamwise and
shear components of the Reynolds stress, −u′u′ and −u′v′, are presented downstream of the cylinder at
x = 1. The best prediction are obtained for u though the strength of the wall jet caused by the flow in the
gap under the cylinder is slightly underpredicted. For the other quantities, the numerical results capture the
major trends observed in the measurements but with some significant discrepancies in magnitude indicating
that the turbulence model can not reproduce completely the flow physics.

We now perform uncertainty analysis on input data using sensitivity information. We consider uncer-
tainties on the gap size and use lift and drag coefficients for illustrative purposes. We must consider the
total derivatives of CD and CL since uncertainties in S cause the square to change its location. Thus, with
σ = τ − pI, we compute :

D

DS

[
CD

CL

]
=

1
ρU2

0 L

∫
Γw

∂σ

∂S
· n̂ dΓ +

1
ρU2

0 L

∫
Γw

∇σ · ∂X̂
∂S

· n̂ dΓ (46)
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Figure 16: Comparison of Reynolds stress profiles with experiments at x = 1

(given that ∂n̂
∂S = 0) to obtain the uncertainty estimates:

δCD =
∣∣∣∣DCD

DS

∣∣∣∣ |δS|
δCL =

∣∣∣∣DCL

DS

∣∣∣∣ |δS|
Table 6 shows the relative uncertainties on the outputs CD and CL due to various levels of uncertainty in
the gap size (1, 2, 3, 7%). The data shows that uncertainty on the gap size causes modest uncertainties on
the drag coefficient. However, the lift is marred with unacceptably large uncertainty estimates : 1% on S
causes an uncertainty of 7.465% while an input uncertainty of 3% causes an output uncertainty of 22%,
indicating that we have reached the limit of what is reasonable to do with first order sensitivity due to the
highly non-linear dependency of the Lift with the gap size. However, another possibility might be that the
numerical evaluation of transpiration terms in Eq. 46 are not fully grid converged in some areas.

δS
S0

|δCD|
CD

|δCL|
CL

0.01 0.295% 7.465%

0.03 0.885% 22.395%

0.05 1.476% 37.325%

0.07 2.065% 52.255%

Table 6: Uncertainties on CD and CL

We now derive error bars on the friction coefficient along the flat plate due to uncertainties on the gap
size value from :

δCf = ±∂Cf

∂S
|δS|

Figure 17 shows the friction coefficient distribution with error bars corresponding to 1%, 3%, 5% and 7%
of relative uncertainties on the gap size. As can be seen, the uncertainty on Cf is negligible for 1% in
comparison to experimental uncertainties. However, it becomes significant for more than 3% of uncertainty
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Figure 17: Error bars on the friction coefficient due to uncertainties on the gap size

on the gap size. For 7%, the uncertainty on the friction coefficient reaches values up to 10% of the nominal
prediction in the area around the square cylinder.

7 Conclusions

This paper has presented Code Verification, Solution Verification and Validation results for an adaptive
finite element RANSE solver. The flow solver, the adaptive procedure and the error estimator have all been
verified in the context of k-epsilon models of turbulent flows with wall functions using the Method of the
Manufactured Solution. This builds confidence in the numerical methods used and provides quantitative
information about the accuracy and reliability of the error estimation procedures. Then, Solution Verification
has been performed for two turbulent flows. Adaptivity has proven a very cost-effective tool for assessing
and controlling numerical errors and obtaining grid independent results. A third step in the V&V process,
Validation of the turbulent flow over a square cylinder in proximity of a flat plate has been presented using
comparisons with experiments. Finally, Sensitivity Analysis of this complex problem has been performed to
yield uncertainty estimates of physical quantities with respect to uncertainties in the gap size between the
cylinder and the flat plate. We close by restating that our approach yields error estimates with a single grid
computation. CGI based methods required a minimum of two grids if the convergence rate is assumed a
priori and three if one prefers to estimate the effective convergence rate.
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Paper No. 8 
 
 
 
Discusser’s Name: Chris Roy 
 
 
 
Question:  1)  How can the observed order of accuracy be computed for the  

           flat plate case without uniform mesh refinement? 
2) For the square cylinder case, were the solutions steady-state or unsteady? 

Note, that there is a strong non-turbulent instability when the cylinder is 
moved away from the wall. 

 
Authors’ Reply:  
1) The strategy behind mesh adaptivity is to equidistribute the error over the computational domain. 

Complete error equidistribution is only possible when considering a single variable and can only 
be partial in a multi-variable context. Due to the equidistribution principle, strong local refinement 
is performed during the first adaptive cycles. However, after these cycles, the equidistribition can 
no longer be improved. Thus, the last adaptive steps almost correspond to uniform refinement 
for reducing the global error and allow for the calculation of the observed orders of accuracy. 
Note that, for another study, we have used a set of uniformly refined grids. The conclusion of the 
code verification was quite similar including the computed observed orders of accuracy. 

 
2) We have only addressed gap heights for which flows are reported steady by experimental 

studies. Indeed, the baseline gap size is S/D=0.25 and we have considered perturbations in this 
parameter up to 10%. Hence all cases are far from the onset of the instability that is reported 
around S/D=0.4. 

 
 
 
Discusser’s Name: William Oberkampf 
 
 
Question: What error estimator was used that only gave an order of magnitude estimate of the 

solution error? 
 
Authors’ Reply:  
We consider two different error estimators which are both single-grid recovery-based techniques: 
i) The ZZ error estimator which provides elemental error norms for all variables (the semi-norm for 
the Taylor-Hood element) 
ii) a Wibert type of error estimator which provide pointwise error estimations (that are more difficult 
to obtain than elemental error norms) 
ZZ was used for diving the mesh adaptation procedure while “Wibert” was used to estimate the error 
on post-processed quantities (drag, pressure coefficient, recirculation length, local point variables, 
…) 
 
On a manufactured solution that mimics a turbulent boundary layer, we report (with sufficient grid 
resolution): 
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- the ZZ estimator can reproduce the true error fairly well. Efficiency indexes are  
   typically around 0.8 (and close to 1 for laminar problem) 
- the Wibert error estimator computes the order of magnitude of the true error but does not provide 
one significant digit. 
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